Roll	No.	***************************************
KUII	140.	***********************

DD-2802

M. A./M. Sc. (Previous) EXAMINATION, 2020

MATHEMATICS

Paper Second

(Real Analysis)

Time: Three Hours

Maximum Marks: 100

Note: All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) If r' is continuous on [a, b], then prove that r is rectifiable and:

$$\Lambda(r) = \int_a^b |r'(t)| dt$$

- (b) State and prove fundamental theorem of calculus.
 - (c) Let f be monotonic on [a, b] and let α be continuous and monotonically increasing on [a, b]. Then prove that:

 $f \in \mathbb{R}(\alpha)$.

(A-32) P. T. O.

Unit-II

- 2. (a) Show that the sequence $\{f_n\}$, where $f_n(x) = nx(1-x)^n$ does not converge uniformly on [0, 1].
 - (b) In a power series $\sum_{n=0}^{\infty} a_n x^n$ converges at the end point x = R of the interval of convergence (-R, R), then prove that it is uniformly convergent in the closed interval [0, R].
 - (c) State and prove Weierstrass's M-test for uniform convergence as series.

Unit-III

- 3. (a) Prove that a linear operator A on a finite dimensional vector space X is one to one if and only if the range of A is all of X, that is if and only if A is onto.
 - (b) Find the maximum and minimum values of the function:

$$f(x,y) = 2x^2 - 3y^2 - 2x$$
,

subject to the constraint $x^2 + y^2 \le 1$.

(c) Let Ω be the set of all invertible linear operators on R^n . if $A \in \Omega$, $B \in L(R^n)$ and $\|B - A\| \|A^{-1}\| < 1$, then prove that $B \in \Omega$.

Unit-IV

4. (a) State and prove Lebesgue's monotone convergence theorem.

- (b) Show that "A Borel measurable set is Lebesgue measurable."
- (c) Let $\{A_n\}$ be a countable collection of sets of real numbers. Then show that:

$$m^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} m^* (A_n).$$
Unit—V

- 5. (a) State and prove Minkowski's inequalities for L^p -spaces.
 - (b) State and prove Jensen's inequality.
 - Show that the class B of all μ^* -measurable sets is a σ -algebra of subsets of X. If $\overline{\mu}$ is μ^* restricted to B, then $\overline{\mu}$ is a complete measure on B.