

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Paper - I

Functional Analysis-II

Time : Three Hours]

[Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove closed graph theorem.
 - (b) Let X be a Banach space and Y be a normed linear space. Let $\{T_i\}$ be a nonempty set of continuous linear transformation from X into Y, such that $\{T_i(x)\}$ is bounded for each x and X, then show that is $\{||T_i||\}$ is bounded.

DRG_106_(3)

(2)

(c) Let T be a bounded linear transformation from a Banach space X into a normed linear space Y. Then show that the openness of T implies the completness of Y.

Unit-II

- 2. (a) Let X and Y be normed linear space. Then show that B(X, Y) the set of all bounded linear transformations from X into Y, is a normed linear space.
 - (b) Let X is a Banach space. Then show that X is reflexive if and only if X^* is reflexive, where X^* is the conjugate space of a normed linear space X.
 - (c) Let E be a real normed linear space and let M be a linear subspace of E. If $f \in M^*$, then show that there is a $g \in E^*$ such that $f \subset g$ and ||g|| = ||f||.

Unit-III

- 3. (a) State and prove Bessel's inequality.
 - (b) If X is an inner product space and $x, y \in X$, then show that $|(x, y)| \le ||x|| ||y||$.
 - (c) Show that a Banach space is a Hilbert space if and only if the parallelogram law holds.

DRG_106_(3)

Unit-IV

- **4.** (*a*) State and prove Riesz Representation theorem.
 - (b) Prove that every Hilbert space is reflexive.
 - (c) Let T be an operator on a Hilbert space
 H. Then there exists a unique operator
 T* on H such that

$$(Tx, y) = (x, T^*y)$$

for all $x, y \in H$.

Unit-V

- 5. (a) If T_1 and T_2 are self-adjoint, then show that $T_1 T_2$ is self-adjoint if and only if they commute, i.e. $T_1 T_2 = T_2 T_1$.
 - (b) State and prove generalized Lax-Milgram theorem.
 - (c) If T is a normal operator on a Hilbert space H and D is any scalar, then show that $T-\lambda I$ is also normal.

DRG_106_(3)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Paper - III (C)

Fuzzy Set Theory and Its Applications-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- **1.** (*a*) Define fuzzy propositions with properties and examples.
 - (b) Define fuzzy quantifiers with examples.
 - (c) Write the method of inference from conditional and qualified propositions.

DRG_212_(4)

(2)

Unit-II

- 2. (a) Let f be a function defined by $f(a) = e^{a}$ all $a \in [0, 1]$. Find the for fuzzy intersection, fuzzy union, fuzzy implication and fuzzy compliment generated by f.
 - (b) Explain approximate reasoning and fuzzy language with one such example.
 - (c) Write the interpolation method and show that $B_2^1 \subseteq B_4^1 \subseteq B_1^1 = B_3^1$.

Unit-III

- **3.** (*a*) Write a short note on design of fuzzy controllers.
 - (b) Discuss possible ways of fuzzyfying the general dynamic system.
 - (c) Discuss the design of a air conditioner fuzzy controller.

Unit-IV

4. (*a*) Define defuzzification and write any two methods of defuzzification.

DRG_212_(4)

(b) Aggregate graphically the fuzzy sets :

$$A_{1} = \frac{0}{0}, \frac{.3}{1}, \frac{.3}{2}, \frac{.3}{3}, \frac{.3}{4}, \frac{.0}{5}$$
$$A_{2} = \frac{0}{3}, \frac{.5}{4}, \frac{.5}{5}, \frac{.5}{6}, \frac{.0}{7}$$
$$A_{3} = \frac{0}{5}, \frac{1}{6}, \frac{1}{7}, \frac{.0}{8}$$

and solve it by the centroid method.

(c) Solve the following fuzzy linear programming problems

Max. $z = 6x_1 + 5x_2$

Subject to

 $(5, 3, 2)x_1 + (6, 4, 2)x_2 \le (25, 6, 9)$ (5, 2, 3)x_1 + (2, 1.5, 1)x_2 \le (13, 7, 4) x_1, x_2 > 0.

Unit-V

5. (a) Let each individual of four decision makers has a total preference ordering $P_i (i \in N)$ on a set of alternatives $X = \{a, b, c, d\}$ as $P_1 = (a, b, d, c); P_2 = (a, c, b, d);$ $P_3 = (b, a, c, d); P_4 = (a, d, b, c)$

DRG_212_(4)

(4)

Find the fuzzy preference relation. Also find α -cuts of the fuzzy relation and group level of agreement concerning the social choice denoted by the total ordering (a, b, c, d).

- (b) Explain individual and multiperson decision making in fuzzy environment.
- (c) Explain construction of an ordering of all given alternatives by Shimura method.

DRG_212_(4)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Optional - A

Paper - IV

Operations Research

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use dynamic programming to solve Minimize $z = p_1 \log p_1 + p_2 \log p_2$

 $+ p_n \log p_n$

Subject to the constraints :

$$p_1 + p_2 + p_3 + \dots + p_n = 1$$
 and $p_j \ge 0$ (*j*=1, 2, *n*)

DRG_268_(4)

- (b) What is principle of optimality? Write the recursive equation approach to solve dynamic programming problem.
- (c) Use dynamic programming to solve the following L.P.P. Maximize $z = 3x_1 + 5x_2$ Subject to the constraints : $x_1 \le 4$, $x_2 \le 6$, $3x_1 + 2x_2 \le 18$ and $x_1, x_2 \ge 0$

Unit-II

- 2. (a) Consider a 'modified' form of 'matching biased wins' game problem. The matching player is paid ₹ 8 if the two coins turns both heads and ₹ 1 if the coins turns both tails. The non-matching player is paid ₹ 3 when two coins do not match. Given the choice of being the matching or non-matching player, which one would you choose and what would be your strategy?
 - (b) Solve the following problem graphically:

Player B Player A $\begin{bmatrix} 3 & -3 & 4 \\ -1 & 1 & -3 \end{bmatrix}$

(c) For the following playoff matrix, find the value of the game and the strategies of

DRG_268_(4)

(Continued)

(2)

player A and B by using Linear Programming:

Player *B* Player *A* $\begin{bmatrix} 3 & -1 & 4 \\ 2 & 6 & 7 & -2 \end{bmatrix}$

Unit-III

- 3. (a) Solve the following integer P.P.: Maximize z = 2x₁ + 3x₂ Subject to the constraints: -3x₁ + 7x₂ ≤ 14, 7x₁ - 3x₂ ≤ 14, x₁, x₂ ≥ 0 and are integers
 (b) Use branch and bound method to solve the following L.P.P.: Minimize z = 4x₁ + 3x₂
 - Subject to the constraints : $5x_1 + 3x_2 \ge 30$, $x_1 \le 4$, $x_2 \le 6$, $x_1, x_2 \ge 0$ and are integers
 - (c) Maximize $z = x_1 + x_2$ Subject to the constraints : $3x_1 + 2x_2 \le 5$, $x_2 \le 2$, $x_1, x_2 \ge 0$ and x_1 is an integer.

DRG_268_(4)

(4)

Unit-IV

- **4.** (*a*) Write the applications of operations reserach to industrial problems.
 - (b) Explain petroleum and refinery operations.
 - (c) Explain blending problems.

Unit-V

5.	<i>(a)</i>	Obtain the necessary and sufficient
		conditions for the optimum solutions of
		the following NLPP :
		Minimize $z = f(x_1, x_2)$
		$= 3e^{2x_1+1} + 2e^{x_2+5}$
		Subject to the constraints :
		$x_1 + x_2 = 7$ and
		$x_1, x_2 \ge 0$
	(<i>b</i>)	Use Wolfe's method to solve
		Max. $z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$
		Subject to the constraints :
		$x_1 + 2x_2 \le 2$ and
		$x_{1}, x_{2} \ge 0$
	(c)	Solve the following quadratic
	(0)	programming problems by using Beale's
		method :
		$Maximize z = 2x_1 + 3x_2 - x_1^2$
		Subject to the constraints :
		$x_1 + 2x_2 \le 4$ and
		$x_1, x_2 \stackrel{2}{\geq} 0$

DRG_268_(4)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Paper - II

Partial Differential Equations and Mechanics

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove Hamilton ODE.
 - (b) Derive Hopf-Lax formula.
 - (c) For asymptotics in $|\infty|$ norm, there exists a constant C such that $|u(x,t)| \le C/\sqrt{t}$.

DRG_265(3)

(2)

Unit-II

2. (*a*) Use separation of variables to solve the porous medium equation

$$u_t = \Delta(u^{\Upsilon}) = 0$$
 in $\mathbb{R}^n \times (0, \infty)$.

- (b) State and prove Plancherel's theorem.
- (c) Derive Hopf-Cole transformation.

Unit-III

- **3.** (*a*) Explain about vanishing viscosity method for Burger's equation.
 - (b) Write about asymptotics for linear terms.
 - (c) Define Majorants. Show that if $f = \sum_{\alpha} f_{\alpha} \cdot x^{\alpha}$ converges for |x| < r and $0 < s\sqrt{n} < r$ then f has a majorant for $|x| < s\sqrt{n}$.

Unit-IV

- **4.** (*a*) State and prove the principle of least action.
 - (b) Explain about Poincare-Cartan integral.

DRG_265_(3)

(c) Show that the transformation

$$p = q \operatorname{cot} p, \ Q = \log\left(\frac{1}{q}\sin p\right)$$

is cannonical.

Unit-V

- 5. (a) State and prove the relation between Lagrange's and Poisson's brackets.
 - (b) Prove that the Poisson bracket of two constants of motion is itself a constant of the motion.
 - (c) State and prove Jacobi Identity through Poisson bracket.

DRG_265_(3)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Optional - A

Paper - V

Programming in 'C' (with ANSI Features) - II

Time : Three Hours] [Maximum Marks : 70

Note : Answer any **two** parts from each question. All questions carry equal marks.

- 1. (a) What is static storage class? Explain with suitable example.
 - (b) Demonstrate local and global variable using suitable example.
 - (c) Explain ANSI rules for the syntax and semantics of the storage class.

DRG_107_(3)

- (2)
- **2.** (*a*) What is Pointer ? Explain pointer arithmetics with example.
 - (b) How to pass Array as argument in a function? Explain with suitable example.
 - (c) Demonstrate pointer to pointer with suitable example.
- **3.** (*a*) What is recursive function ? Explain with example.
 - (b) Demonstrate macro substitution with suitable example.
 - (c) What is conditional compilation? Explain with suitable example.
- **4.** (*a*) Write a program to input Roll No, Name and Marks of any three subjects then calculate total marks and percentage using structure.
 - (b) Write a program to demonstrate, how the memory is allocated dynamically and release.
 - (c) Write a program to add a new node in single link list and display the value of all nodes.
- 5. (a) What is error ? How to handle errors in 'C' languages ?

DRG_107_(3)

- (b) Demonstrate the reading and writting in a file with suitable example.
- (c) Explain any five input/output functions in 'C' language with example.

DRG_107_(3)