DD-2805

- (c) Define the following :
 - (i) Equivalence of finite state machine
 - (ii) Reduced machine
 - (iii) Deterministic finite automata
 - (iv) Non-deterministic finite automata

Unit-V

- 5. (a) Define Polish Notation and prove that the rank of any well formed Polish formula is 1 and the rank of any proper head of a polish is greater than or equal to 1.
 - (b) State and prove Pumping Lemma.
 - (c) Define Language and show that the language $L(G) = \{a^n b a^n : n \ge 1\}$ is generated by grammar :

 $G = \{(S,c), (a,b), S, \phi\},\$

where ϕ is the set of production S \rightarrow aca, c \rightarrow aca, c \rightarrow b.

Define Mealy machine and consider the Moore machine described by the transition table given by table. Construct the corresponding Moaly machine :

nghiO	Next State		
			State
0	29	310	
DD-2805	63		
	Ø.,	i P	

550

(A-30)

Roll No.

DD-2805

M. A./M. Sc. (Previous) EXAMINATION, 2020

MATHEMATICS

Paper Fifth

(Advance Discrete Mathematics)

Time : Three Hours

Maximum Marks : 100

Note: Attempt any *two* parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Define Tautology. If H_1 , H_2 ,, H_m and P imply Q, then prove that H_1, H_2, \dots, H_m imply $P \rightarrow Q$.
 - (b) Define Semigroup Homomorphism. Let (S, *),
 (T, Δ) and (V, ⊕) be semigroups and g: S → T and h: T → V be semigroup homomorphism. Then show that (h o g) : S → V is a semigroup homomorphism from (S; *) to (V, ⊕).

(c) Show that :

 $P \to (Q \to R) \Leftrightarrow P \to (\neg Q \lor R) \Leftrightarrow (P \land Q) \to R$

(A-30) P. T. O.

[2]

DD-2805

- Unit—II
- 2. (a) Define distributive lattice and let $(L, *, \oplus)$ be a distributive lattice, then prove that for any $a, b, c \in L$:

 $(a * b = a * c) \land (a \oplus b = a \oplus c) \Rightarrow b = c.$

(b) Use the Karnaugh map representation to find a minimal sum-of-product expression of the following function :

 $f(a,b,c,d) = \sum (10,12,13,14,15).$

(c) Define a lattice and sublattice. Prove that the set

 $M = \{1, 2, 3, 4, 6, 8, 12, 24\};$

the set of all divisors of the integer 24 is a sublattice of the lattice $(1, \leq)$ with respect to the relation " \leq " where :

 $L = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$ and "x \le y" means x divides y.

3. (a) Define planar graph and for any connected planar graph, prove that :

V - e + r = 2. Or V - e + r = 2.

(b) Define Incidence matrix and find the incidence matrix in given graph :

(A-30)

[3]

(c) Define spanning tree and find the minimal spanning tree for the weighted graph in the following figure using Kruskal's algorithm :

4. (a) Define transition system. Prove that for any transition function δ and for any two input strings x and y:

 $\delta(q, xy) = \delta(\delta(q, x), y).$

(b) Define Mealy machine and consider the Moore machine described by the transition table given by table. Construct the corresponding Mealy machine :

Moore Machine

Present State	Next State		Output	
	<i>a</i> = 0	<i>a</i> = 1		
$\rightarrow q_1$	<i>q</i> ₁	<i>q</i> ₂	0	
<i>q</i> ₂	<i>q</i> 1	<i>q</i> ₃	0	
<i>q</i> ₃	q_1	q_3	1	

(A-30) P. T. O.